Skip to content
Snippets Groups Projects
README.Rmd 20 KiB
Newer Older
---
title: "TPH2 KO statistics"
output: github_document
author: "Alex Meng, Joanes Grandjean"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, eval=FALSE,warning = FALSE,message=FALSE)
```
# Setup environement
Download DABEST
```{r setup env}
# you just need to run these once. 

install.packages('devtools')
install.pacakges("reshape2")
install.pacakges("wesanderson")
Xianzong Meng's avatar
Xianzong Meng committed
install.packages("svglite")
devtools::install_github("ACCLAB/dabestr")   
devtools::install_github("karthik/wesanderson")
```
# Load pacakges

```{r load env}
library(tidyverse)
library(glue)
library(dabestr)
library(wesanderson)  # see https://github.com/karthik/wesanderson
library(reshape2)
Xianzong Meng's avatar
Xianzong Meng committed
library(svglite)
pal <- wes_palette("Darjeeling1")
```


Xianzong Meng's avatar
Xianzong Meng committed
# behavioural tests including EPM and Social interaction
```{r EPM_open arms duration}
grandjeanlab's avatar
grandjeanlab committed

Xianzong Meng's avatar
Xianzong Meng committed
df <- read_csv('assets/tables/EPM_open_arms_duration.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
grandjeanlab's avatar
grandjeanlab committed

Xianzong Meng's avatar
Xianzong Meng committed
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
grandjeanlab's avatar
grandjeanlab committed

Xianzong Meng's avatar
Xianzong Meng committed
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
grandjeanlab's avatar
grandjeanlab committed

Xianzong Meng's avatar
Xianzong Meng committed
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE)  %>% hedges_g() 
dabest_hedges
Xianzong Meng's avatar
Xianzong Meng committed
Fig1A<-plot(dabest_hedges, palette = pal,  rawplot.ylabel = "duration in open arms (%)") 
ggsave('assets/figure/EPM open arms duration.svg', plot = Fig1A, device = 'svg',dpi = 300)
Xianzong Meng's avatar
Xianzong Meng committed
Fig1A

dabest_hedges$result %>% mutate(p = p_tmp)
 
```
```{r EPM_closed arms duration}
df <- read_csv('assets/tables/EPM_closed_arms_duration.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE)  %>% hedges_g() 
dabest_hedges

Fig1B<-plot(dabest_hedges, palette = pal,  rawplot.ylabel = "duration in closed arms (%)") 
ggsave('assets/figure/EPM closed arms duration.svg', plot = Fig1B, device = 'svg',dpi = 300)

Fig1B

dabest_hedges$result %>% mutate(p = p_tmp)
```
```{r EPM_entry closed arms}
df <- read_csv('assets/tables/EPM_entry_closed_arms.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE)  %>% hedges_g() 
dabest_hedges

Fig1C<-plot(dabest_hedges, palette = pal,  rawplot.ylabel = "number of entry") 
ggsave('assets/figure/EPM entry closed arms.svg', plot = Fig1C, device = 'svg',dpi = 300)

Fig1C

dabest_hedges$result %>% mutate(p = p_tmp)
```
```{r EPM_entry open arms}
df <- read_csv('assets/tables/EPM_entry_open_arms.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE)  %>% hedges_g() 
dabest_hedges

Fig1D<-plot(dabest_hedges, palette = pal,  rawplot.ylabel = "number of entry") 
ggsave('assets/figure/EPM entry open arms.svg', plot = Fig1D, device = 'svg',dpi = 300)

Fig1D

dabest_hedges$result %>% mutate(p = p_tmp)
```
```{r EPM_first entry latency}
df <- read_csv('assets/tables/EPM_first_time_entry.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE)  %>% hedges_g() 
dabest_hedges

Fig1E<-plot(dabest_hedges, palette = pal,  rawplot.ylabel = "latency time (s)") 
ggsave('assets/figure/EPM first time entry.svg', plot = Fig1E, device = 'svg',dpi = 300)

Fig1E

dabest_hedges$result %>% mutate(p = p_tmp)
```
```{r EPM_total distance}
df <- read_csv('assets/tables/EPM_total_distance.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE)  %>% hedges_g() 
dabest_hedges

Fig1F<-plot(dabest_hedges, palette = pal,  rawplot.ylabel = "total distance moved (cm)") 
ggsave('assets/figure/EPM total distance.svg', plot = Fig1F, device = 'svg',dpi = 300)

Fig1F

dabest_hedges$result %>% mutate(p = p_tmp)
```
```{r SI_total no contact}
df <- read_csv('assets/tables/SI_total_no_contact.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
grandjeanlab's avatar
grandjeanlab committed
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

Xianzong Meng's avatar
Xianzong Meng committed
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE)  %>% hedges_g() 
dabest_hedges

Fig1G<-plot(dabest_hedges, palette = pal,  rawplot.ylabel = "total no contact (%)") 
ggsave('assets/figure/SI total no contact.svg', plot = Fig1G, device = 'svg',dpi = 300)

Fig1G

dabest_hedges$result %>% mutate(p = p_tmp)
```
```{r SI_total mounting}
df <- read_csv('assets/tables/SI_total_mounting.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
Xianzong Meng's avatar
Xianzong Meng committed
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE)  %>% hedges_g() 
dabest_hedges

Fig1H<-plot(dabest_hedges, palette = pal,  rawplot.ylabel = "total mounting (%)") 
ggsave('assets/figure/SI total mounting.svg', plot = Fig1H, device = 'svg',dpi = 300)

Fig1H

dabest_hedges$result %>% mutate(p = p_tmp)
```
```{r SI_total aggressiveness}
df <- read_csv('assets/tables/SI_total_aggressiveness.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE)  %>% hedges_g() 
dabest_hedges

Xianzong Meng's avatar
Xianzong Meng committed
Fig1I<-plot(dabest_hedges, palette = pal,  rawplot.ylabel = "total aggressiveness (%)") 
ggsave('assets/figure/SI total aggressiveness.svg', plot = Fig1I, device = 'svg',dpi = 300)
Xianzong Meng's avatar
Xianzong Meng committed
Fig1I
Xianzong Meng's avatar
Xianzong Meng committed
dabest_hedges$result %>% mutate(p = p_tmp)
```

# PCR 
```{r PCR_IF}

df <- read_csv('assets/tables/PCR_IF.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig2A <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)
Xianzong Meng's avatar
Xianzong Meng committed

ggsave('assets/figure/PCR_IF.svg', plot = Fig2A, device = 'svg',dpi = 300)
Xianzong Meng's avatar
Xianzong Meng committed
```{r PCR_PRL}
df <- read_csv('assets/tables/PCR_PRL.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)
Xianzong Meng's avatar
Xianzong Meng committed
Fig2B <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/PCR_PRL.svg', plot = Fig2B, device = 'svg',dpi = 300)
```
```{r PCR_PVN}
df <- read_csv('assets/tables/PCR_PVN.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig2C <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/PCR_PVN.svg', plot = Fig2C, device = 'svg',dpi = 300)
```
```{r PCR_DR}
df <- read_csv('assets/tables/PCR_DR.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig2D <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/PCR_DR.svg', plot = Fig2D, device = 'svg',dpi = 300)
```
```{r PCR_CA}
df <- read_csv('assets/tables/PCR_CA.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig2E <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/PCR_CA.svg', plot = Fig2E, device = 'svg',dpi = 300)
```
```{r PCR_dCA1}
df <- read_csv('assets/tables/PCR_dCA1.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig2F <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/PCR_dCA1.svg', plot = Fig2F, device = 'svg',dpi = 300)
```
```{r PCR_dCA3}
df <- read_csv('assets/tables/PCR_dCA3.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig2G <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/PCR_dCA3.svg', plot = Fig2G, device = 'svg',dpi = 300)
```
```{r PCR_dGRDG}
df <- read_csv('assets/tables/PCR_dGRDG.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig2H <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/PCR_dGRDG.svg', plot = Fig2H, device = 'svg',dpi = 300)
```
```{r PCR_vCA1}
df <- read_csv('assets/tables/PCR_vCA1.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig2I <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/PCR_VCA1.svg', plot = Fig2I, device = 'svg',dpi = 300)
```
```{r PCR_vCA3}
df <- read_csv('assets/tables/PCR_vCA3.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig2J <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/PCR_vCA3.svg', plot = Fig2J, device = 'svg',dpi = 300)
```
```{r PCR_vGRDG}
df <- read_csv('assets/tables/PCR_vGRDG.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig2K <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/PCR_vGRDG.svg', plot = Fig2K, device = 'svg',dpi = 300)
```

#Oxytocin protein
```{r OXY_MFC}
df <- read_csv('assets/tables/OXY_MFC.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig3A <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "pg oxytocin/µg tissue protein/ml")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/OXY_MFC.svg', plot = Fig3A, device = 'svg',dpi = 300)
```
```{r OXY_PVN}
df <- read_csv('assets/tables/OXY_PVN.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
Xianzong Meng's avatar
Xianzong Meng committed
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig3B <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "pg oxytocin/µg tissue protein/ml")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/OXY_PVN.svg', plot = Fig3B, device = 'svg',dpi = 300)
```
```{r OXY_DR}
df <- read_csv('assets/tables/OXY_DR.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

Xianzong Meng's avatar
Xianzong Meng committed
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig3C <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "pg oxytocin/µg tissue protein/ml")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/OXY_DR.svg', plot = Fig3C, device = 'svg',dpi = 300)
```
```{r OXY_CA}
df <- read_csv('assets/tables/OXY_CA.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Xianzong Meng's avatar
Xianzong Meng committed
Fig3D <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "pg oxytocin/µg tissue protein/ml")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)

dabest_hedges$result %>% mutate(p = p_tmp)
Xianzong Meng's avatar
Xianzong Meng committed
ggsave('assets/figure/OXY_CA.svg', plot = Fig3D, device = 'svg',dpi = 300)
Xianzong Meng's avatar
Xianzong Meng committed
```{r OXY_HIP}
df <- read_csv('assets/tables/OXY_HIP.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()

df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))

dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

dabest_hedges

plot(dabest_hedges, palette = pal)

Fig3E <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "pg oxytocin/µg tissue protein/ml")

p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
Xianzong Meng's avatar
Xianzong Meng committed
dabest_hedges$result %>% mutate(p = p_tmp)

ggsave('assets/figure/OXY_HIP.svg', plot = Fig3E, device = 'svg',dpi = 300)
```

# what happens if dabest bugs? 

```{r demo dabest debug}

#load the table. for other cases, it might help to keep naming consistent between tables, see example. Also, avoid spaces or weird characters in table names. 
df <- read_csv('assets/tables/testname_measure.csv', col_types = cols()) %>% melt() %>% rename(group = variable) %>% drop_na()



dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-'), paired = FALSE)  %>% hedges_g() 

#figure will require post-pocessing to make do. 
plot(dabest_hedges, palette = pal)



dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE)  %>% hedges_g() 

#figure will require post-pocessing to make do. 
plot(dabest_hedges, palette = pal)


 
```

Finally, you can consider https://rpkgs.datanovia.com/ggpubr/reference/ggarrange.html to make composite figures in R. Happy to help you get started.