Newer
Older
---
title: "TPH2 KO statistics"
output: github_document
author: "Alex Meng, Joanes Grandjean"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, eval=FALSE,warning = FALSE,message=FALSE)
```
# Setup environement
Download DABEST
```{r setup env}
# you just need to run these once.
install.packages('devtools')
install.pacakges("reshape2")
install.pacakges("wesanderson")
devtools::install_github("ACCLAB/dabestr")
devtools::install_github("karthik/wesanderson")
```
# Load pacakges
```{r load env}
library(tidyverse)
library(glue)
library(dabestr)
library(wesanderson) # see https://github.com/karthik/wesanderson
pal <- wes_palette("Darjeeling1")
```
###behavioural tests EPM (Fig1)
##Fig1 dataset description:
A. Experimental diagram
B. Open arms duration
C. Number of entry into closed arms
D. Latency time for first time entering open arms
E. Total distance moved
##FigS1 dataset description:
A. Closed arms duration
B. Number of entry into open arms
#Fig1B
df <- read_csv('assets/tables/EPM_open_arms_duration.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
Fig1B<-plot(dabest_hedges, palette = pal, rawplot.ylabel = "duration in open arms (%)")
ggsave('assets/figure/Fig1B.svg', plot = Fig1B, device = 'svg',dpi = 300)
dabest_hedges$result %>% mutate(p = p_tmp)
```
#Fig1C
```{r EPM_entry closed arms}
df <- read_csv('assets/tables/EPM_entry_closed_arms.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
Fig1C<-plot(dabest_hedges, palette = pal, rawplot.ylabel = "number of entry")
ggsave('assets/figure/Fig1C.svg', plot = Fig1C, device = 'svg',dpi = 300)
dabest_hedges$result %>% mutate(p = p_tmp)
```
#Fig1D
```{r EPM_first entry latency}
df <- read_csv('assets/tables/EPM_first_time_entry.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
Fig1D<-plot(dabest_hedges, palette = pal, rawplot.ylabel = "latency time (s)")
ggsave('assets/figure/Fig1D.svg', plot = Fig1D, device = 'svg',dpi = 300)
dabest_hedges$result %>% mutate(p = p_tmp)
```
#Fig1E
```{r EPM_total distance}
df <- read_csv('assets/tables/EPM_total_distance.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
Fig1E<-plot(dabest_hedges, palette = pal, rawplot.ylabel = "total distance moved (cm)")
ggsave('assets/figure/Fig1E.svg', plot = Fig1E, device = 'svg',dpi = 300)
dabest_hedges$result %>% mutate(p = p_tmp)
```
```{r assembling figure 1}
Fig1A<-ggplot() + theme_void() #make an empty space for diagram.
ggarrange(ggarrange(Fig1A, Fig1B, ncol = 2, labels = c("A", "B")),
ggarrange(Fig1C, Fig1D, Fig1E, ncol = 3, labels = c("C", "D", "E")),
ncol = 1, nrow = 2, widths = 30, heights=10) #See http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/81-ggplot2-easy-way-to-mix-multiple-graphs-on-the-same-page/
```
#FigS1A
```{r EPM_closed arms duration}
df <- read_csv('assets/tables/EPM_closed_arms_duration.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
FigS1A<-plot(dabest_hedges, palette = pal, rawplot.ylabel = "duration in closed arms (%)")
ggsave('assets/figure/FigS1A.svg', plot = FigS1A, device = 'svg',dpi = 300)
dabest_hedges$result %>% mutate(p = p_tmp)
```
#FigS1B
```{r EPM_entry open arms}
df <- read_csv('assets/tables/EPM_entry_open_arms.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
FigS1B<-plot(dabest_hedges, palette = pal, rawplot.ylabel = "number of entry")
ggsave('assets/figure/FigS1B.svg', plot = FigS1B, device = 'svg',dpi = 300)
dabest_hedges$result %>% mutate(p = p_tmp)
```
###behavioural tests Social interaction (Fig2)
##Fig2 dataset description:
A. Experimental diagram
B. Total no contact
C. Total mounting
D. Total aggressiveness
##FigS2 dataset description:
A. Total no contact at different time intervals
B. Total mounting at different time intervals
C. Total aggressiveness at different time intervals
df <- read_csv('assets/tables/SI_total_no_contact.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
Fig2B<-plot(dabest_hedges, palette = pal, rawplot.ylabel = "total no contact (%)")
ggsave('assets/figure/Fig2B.svg', plot = Fig2B, device = 'svg',dpi = 300)
dabest_hedges$result %>% mutate(p = p_tmp)
```
```{r SI_total mounting}
df <- read_csv('assets/tables/SI_total_mounting.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
Fig2C<-plot(dabest_hedges, palette = pal, rawplot.ylabel = "total mounting (%)")
ggsave('assets/figure/Fig2C.svg', plot = Fig2C, device = 'svg',dpi = 300)
dabest_hedges$result %>% mutate(p = p_tmp)
```
```{r SI_total aggressiveness}
df <- read_csv('assets/tables/SI_total_aggressiveness.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2+/-'],var.equal=TRUE)$p.value, t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-','Tph2-/-'), paired = FALSE) %>% hedges_g()
Fig2D<-plot(dabest_hedges, palette = pal, rawplot.ylabel = "total aggressiveness (%)")
ggsave('assets/figure/2D.svg', plot = Fig2D, device = 'svg',dpi = 300)
dabest_hedges$result %>% mutate(p = p_tmp)
```
###molecular tests PCR for Oxytocin receptors (Fig3)
##Fig3 dataset description:
A: Diagram of brain punching position
B. Infralimbic cortex
C. Prelimbic cortex
D. Paraventricular nucleus
E. Dorsal raphe nucleus
F. Dorsal granular layer of dentate gyrus
G. Ventral CA1 region of hippocampus
H. Ventral CA3 region of hippocampus
I. Ventral granular layer of dentate gyrus
##FigS3 dataset description
A. Central amygdala
B. Dorsal CA1 region of hippocampus
C. Dorsal CA3 region of hippocampus
```{r PCR_IF}
df <- read_csv('assets/tables/PCR_IF.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig3B <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig3B.svg', plot = Fig3B, device = 'svg',dpi = 300)
```{r PCR_PRL}
df <- read_csv('assets/tables/PCR_PRL.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig3C <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig3C.svg', plot = Fig3C, device = 'svg',dpi = 300)
```{r PCR_PVN}
df <- read_csv('assets/tables/PCR_PVN.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig3D <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig3D.svg', plot = Fig3D, device = 'svg',dpi = 300)
```{r PCR_DR}
df <- read_csv('assets/tables/PCR_DR.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig3E <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig3E.svg', plot = Fig3E, device = 'svg',dpi = 300)
#Fig3F
```{r PCR_dGRDG}
df <- read_csv('assets/tables/PCR_dGRDG.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig3F <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig3F.svg', plot = Fig3F, device = 'svg',dpi = 300)
#Fig3G
```{r PCR_vCA1}
df <- read_csv('assets/tables/PCR_vCA1.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig3G <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig3G.svg', plot = Fig3G, device = 'svg',dpi = 300)
#Fig3H
```{r PCR_vCA3}
df <- read_csv('assets/tables/PCR_vCA3.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig3H <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig3H.svg', plot = Fig3H, device = 'svg',dpi = 300)
#Fig3I
```{r PCR_vGRDG}
df <- read_csv('assets/tables/PCR_vGRDG.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig3I <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig3I.svg', plot = Fig3I, device = 'svg',dpi = 300)
#FigS3A
```{r PCR_CA}
df <- read_csv('assets/tables/PCR_CA.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
FigS3A <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/FigS3A.svg', plot = FigS3A, device = 'svg',dpi = 300)
#FigS3B
```{r PCR_dCA1}
df <- read_csv('assets/tables/PCR_dCA1.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
FigS3B <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/FigS3B.svg', plot = FigS3B, device = 'svg',dpi = 300)
#FigS3C
```{r PCR_dCA3}
df <- read_csv('assets/tables/PCR_dCA3.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
FigS3C <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "mRNA level (% vs Tph2+/+)")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/FigS3C.svg', plot = FigS3C, device = 'svg',dpi = 300)
###molecular tests ELISA for Oxytocin (Fig4)
##Fig3 dataset description:
A. Diagram of brain punching position
B. Medial frontal cortex
C. Paraventricular nucleus
D. Central amygdala
E. Hippocampus
##FigS4 dataset description:
A. Dorsal raphe nucleus
```{r OXY_MFC}
df <- read_csv('assets/tables/OXY_MFC.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig4B <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "pg oxytocin/µg tissue protein/ml")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig4B.svg', plot = Fig4B, device = 'svg',dpi = 300)
df <- read_csv('assets/tables/OXY_PVN.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig4C <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "pg oxytocin/µg tissue protein/ml")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig4C.svg', plot = Fig4C, device = 'svg',dpi = 300)
#Fig4D
```{r OXY_CA}
df <- read_csv('assets/tables/OXY_CA.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig4D <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "pg oxytocin/µg tissue protein/ml")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig4D.svg', plot = Fig4D, device = 'svg',dpi = 300)
#Fig4E
```{r OXY_HIP}
df <- read_csv('assets/tables/OXY_HIP.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
Fig4E <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "pg oxytocin/µg tissue protein/ml")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
dabest_hedges$result %>% mutate(p = p_tmp)
ggsave('assets/figure/Fig4E.svg', plot = Fig4E, device = 'svg',dpi = 300)
```
#FigS4A
```{r OXY_DR}
df <- read_csv('assets/tables/OXY_DR.csv', col_types = cols()) %>% melt() %>% dplyr::rename(group = variable) %>% drop_na()
df %>% group_by(group) %>% summarise(mean=round(mean(value),2), sd=round(sd(value),2))
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
dabest_hedges
plot(dabest_hedges, palette = pal)
FigS4A <- plot(dabest_hedges, palette = pal, rawplot.ylabel = "pg oxytocin/µg tissue protein/ml")
p_tmp<- c(t.test(df$value[df$group == 'Tph2+/+'], df$value[df$group == 'Tph2-/-'],var.equal=TRUE)$p.value)
ggsave('assets/figure/FigS4A.svg', plot = FigS4A, device = 'svg',dpi = 300)
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
# what happens if dabest bugs?
```{r demo dabest debug}
#load the table. for other cases, it might help to keep naming consistent between tables, see example. Also, avoid spaces or weird characters in table names.
df <- read_csv('assets/tables/testname_measure.csv', col_types = cols()) %>% melt() %>% rename(group = variable) %>% drop_na()
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2+/-'), paired = FALSE) %>% hedges_g()
#figure will require post-pocessing to make do.
plot(dabest_hedges, palette = pal)
dabest_hedges <- dabest(df, group, value, idx = c('Tph2+/+','Tph2-/-'), paired = FALSE) %>% hedges_g()
#figure will require post-pocessing to make do.
plot(dabest_hedges, palette = pal)
```
Finally, you can consider https://rpkgs.datanovia.com/ggpubr/reference/ggarrange.html to make composite figures in R. Happy to help you get started.